Unbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps.
نویسندگان
چکیده
Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pulling and may take place in several pathways. Interestingly, the CD48-2B4 interface can be divided into three distinct patches that act as units when resisting the pulling forces. At experimentally accessible pulling speeds, the characteristic mechanostability forces are in the range between 100 and 200 pN, depending on the pulling direction. These characteristic forces need not be associated with tensile forces involved in the act of separation of the complex because prior shear-involving unraveling within individual proteins may give rise to a higher force peak.
منابع مشابه
Unbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps Protein complexes in mechanical clamps
Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentall...
متن کاملNonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data.
Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unf...
متن کاملReconstructing Potentials of Mean Forcethrough Time Series Analysis of SteeredMolecular Dynamics Simulations
Atomic force microscopy (AFM) experiments and steered molecular dynamics (SMD) simulations have revealed much about the dynamics of protein-ligand binding and unbinding, as well as the stretching and unfolding of proteins. Both techniques induce ligand unbinding or protein unfolding by applying external mechanical forces to the ligand or stretched protein. However, comparing results from these ...
متن کاملDissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force.
The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution ...
متن کاملTuning the mechanical stability of fibronectin type III modules through sequence variations.
Cells can switch the functional states of extracellular matrix proteins by stretching them while exerting mechanical force. Using steered molecular dynamics, we investigated how the mechanical stability of FnIII modules from the cell adhesion protein fibronectin is affected by natural variations in their amino acid sequences. Despite remarkably similar tertiary structures, FnIII modules share l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 82 11 شماره
صفحات -
تاریخ انتشار 2014